Search results for " Salinity Gradient"
showing 10 items of 26 documents
GREEN ENERGY HARVESTING FROM CONCENTRATED SALTWORKS BITTERNS BY REVERSE ELECTRODIALYSIS
2022
Concentrated bitterns discharged from saltworks have extremely high salinity, often up to 300 g/L, thus their direct disposal not only can have harmful effect on the environment, but also generates a depletion of a potential resource of renewable energy. Here, reverse electrodialysis (RED), an emerging electrochemical membrane process, is introduced to capture the salinity gradient power (SGP) intrinsically conveyed by these bitterns also aiming at the reduction of concentrated salty water disposal. A RED unit at the laboratory scale has been adopted to study the SGP potential with different ion exchange membrane and different operating conditions. In particular, membranes supplied by Fujif…
CLOSING THE LOOP: STUDY OF INTEGRATED CYCLES WITH NATURAL AND ARTIFICIAL SOLUTIONS FOR THE PRODUCTION OF ENERGY, MINERALS AND FRESH WATER
Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect D…
2019
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at a…
Characterization of pressure retarded osmosis lab-scale systems
2016
Power generation from salinity gradient is a viable alternative to produce energy from renewable sources. Pressure Retarded Osmosis (PRO) is one of the technologies proposed so far for the exploitation of such energy source. In the present preliminary work, two different geometry modules were tested under atmospheric pressure (i.e. forward osmosis or depressurized-PRO conditions). The first one is a conventional planar geometry cell. The second is a customized cylindrical membrane module, able to mechanically support the osmotic membrane along with the spacers. The latter, thanks to its design, allows membranes and spacers to be easily changed for testing purposes. A novel simplified proced…
Cathodic abatement of Cr(VI) in water by microbial reverse-electrodialysis cells
2015
Abstract For the first time a microbial reverse electrodialysis cell (MRC) was used for the treatment of water contaminated by Cr(VI). It has been recently shown that both inorganic and organic pollutants can be removed by reverse electrodialysis processes (RED) using water with different salinity without the supply of electric energy. However, a high number of membrane pairs is usually necessary for the treatment of wastewater by RED. Here, it was showed that a lower number of membranes can be used by the utilization of a MRC (i.e., a RED cell with a biotic anode) for such purposes. Indeed, the abatement of Cr(VI), chosen as model pollutant, was successfully achieved by cathodic reduction …
Techno-economic evaluation of Reverse Electrodialysis process in different real environments
2018
Salinity Gradient Power is a promising renewable energy source based on the recovery of the chemical potential released from the mixing of solutions at different concentrations. Natural salinity gradients are extensively available worldwide in natural reservoirs. Reverse Electrodialysis is an innovative technology able to perform a direct conversion of the energy of mixing into electricity. Salinity gradients coming from natural resources or from human activities are worldwide available. In the present work a number of different scenarios, including natural resources (e.g. rivers, seas, lakes and salt ponds), industrial/urban wastes (e.g. brine and treated wastewaters) are analysed. The aim…
Thermal regeneration of ammonium bi-carbonate solutions for closed-loop reverse electrodialysis
2016
Reverse electrodialysis is a novel technology that exploits a salinity gradient to generate electrical energy. The salinity gradient can be available from natural waters such as seawater and river water or they can be artificially generated and used within closed-loop applications. This last option has been recently investigated leading to the development of the RED heat engine concept. In this case, the deployed salinity gradient exiting the RED unit is regenerated in a thermally-driven unit using low-temperature heat, thus being able to convert heat to power within an integrated system. Among the different regeneration alternatives, the use of thermolytic salts has been presented as a pro…
RED Heat-to-Power: conversione di calore di scarto in energia elettrica mediante elettrodialisi inversa a ciclo chiuso
2016
La produzione di energia da gradienti salini si sta affermando come una valida alternativa alle tradizionali fonti di energia rinnovabili. In particolare l’elettrodialisi inversa (RED) è di certo tra le tecnologie più promettenti per effettuare la conversione di gradienti salini in energia utile. Un recente sviluppo è l’utilizzo del processo RED a ciclo chiuso con soluzioni saline artificiali, nel quale le soluzioni in uscita dall’unità RED vengono rigenerate all’interno di un’unità di rigenerazione termica, che ripristina il gradiente salino iniziale. L’utilizzo del sistema a ciclo chiuso premette dunque di convertire calore a bassa temperatura (e.g. calore di scarto a T <70-100°C) in e…
CFD PREDICTION OF SCALAR TRANPORT IN THIN CHANNELS FOR REVERSE ELECTRODIALYSIS
2014
Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. Fluid dynamics optimization of the thin channels to be devoted for the RED process is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer and two different spacer (made of either overlapped filaments or woven filaments) filled channels. Two passive scalars were transported along with the water in orde…
Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines
2016
Abstract This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant – located in the South of Italy – represents the final accomplishment of the REAPower project ( www.reapower.eu ). A RED unit equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03 M NaClequivalent) and saturated brine (4–5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with…